
[HPBW] Using CSUBS With HP BASIC for Windows

 stu beatty

* Like other versions of HP BASIC, HP BASIC for Windows (HPBW) is a powerful
tool; but sometimes a user may find that a specialized task can be performed
better by a custom-designed C subprogram (CSUB). The E2061A HPBW CSUB Toolkit
allows to integrate such C subprograms into your HPBW program.

* The heart of an HP BASIC for Windows CSUB is a 32-bit Dynamic Link Library
(DLL). These DLLs can be generated by any compiler and linker combination
that generates a Win32 DLL for Intel processors, such as Visual C++ version
2.X; other languages can be used if they produce Win32 DLLs and if you pass
your parameters using normal C-language calling conventions.

Win32 DLLs can make use of all the standard C library runtime routines -- as
well as some other functions in the Win32 API, such as the "kbdcrt" utility
functions that allow CSUBs to access the HP BASIC keyboard and display.

In HPBW, CSUBs are invoked by the CALL statement, executed either in a program
or "live" from the keyboard. The parameters passed can be of any HP BASIC
data type -- including numeric, complex, string, and arrays. Optional
parameters are allowed, and CSUBs can share COM data with the calling HP BASIC
program.

Error reporting is handled by the C "return()" function: a "return(0)"
indicates no error, while any non-zero return value is reported by HPBW as
an error with the numeric value returned by the CSUB (as well as the line
number of the CALL that resulted in an error). An exception handler
automatically returns control to HPBW from a CSUB on any floating-point
exception.

Note that HPBW can still load and run existing HT BASIC CSUBs developed with
the DOS extender from Phar Lap; these old CSUBs do not need to be recompiled
into DLLs unless they access hardware, and will work alongside the new CSUB
scheme.

* An overview of the steps required to create and run an HPBW CSUB follows.
There are four steps:

 % Create the CSUB protoytpe file.
 % Create the CSUB DLL.
 % Run the HPCSUBW utility provided with the E2061A CSUB Toolkit.
 % LOAD the CSUB.

* Creating a prototype file is easy. A good programming practice is to start
your development with the definition of the CSUB's purpose and parameters;
this can be done (in prototype form) by defining an HP BASIC SUB declaration
to define all the parameters, their type, and their order.

As a simple example, consider a CSUB to calculate the average of all the
numbers in an array. This CSUB has two parameters: first, the array to be

HP BASIC for Windows CSUBs 1997

BOURBAKY BP 53 - 13, Rue des Alpes 07302 TOURNON Cedex - France 04 75 07 81 20 04 75 07 29 74
http://www.bourbaky.com page 1/5

averaged, second, the array to hld the result. The prototype SUB statement is
then:

 10 END
 20 SUB Average(REAL Dat(*), Avg)
 30 SUBEND

After you define this prototype (if you were defining other CSUBs you could
add declarations for them as well), execute RUN and then STORE the prototype
program as a PROG file:

 STORE "MY_SUB.PRO"

* Next, write the C language program and create the DLL:

 #include "csubw.h"

 int average (int npar, /* Number of parameters passed. */
 realptr dat, /* REAL array elements. */
 dimptr dat_dimen, /* Dimension pointer for array. */
 realptr avg) /* REAL result variable. */

 {
 int i; /* Loop counter. */
 int num_elements = dat_dimen->cae; /* Get number array elements. */
 double sum = 0.0; /* Clear sum. */

 if(num_elements == 0) /* Check for no data. */
 {
 return(11); /* Error: NUMERIC VALUE REQUIRED. */
 }
 for(i=0; i < num_elements; i++) /* Sum all array elements. */
 {
 sum += dat[i];
 }
 avg = sum / num_elements; / Put sum in return variable. */
 return(0); /* No error. */
 }

The include file "csubw.h" is provided with the CSUB Toolkit and defines all
the types of pointers to HP BASIC variables (the details are provided in the
Toolkit's manual). Notice that the first C parameter gives the number of
parameters passed and is a part of all HPBW CSUBs; this is useful for handling
optional parameters, but we can ignore it here.

Before compiling and linking, we have to declare exported symbols. One way to
do this is with:

 _declspec(dllexport)

-- in your source file. Another way is with a minimal DEF file; this should
contain at least the name of your DLL and its entry points. For example:

HP BASIC for Windows CSUBs 1997

BOURBAKY BP 53 - 13, Rue des Alpes 07302 TOURNON Cedex - France 04 75 07 81 20 04 75 07 29 74
http://www.bourbaky.com page 2/5

 LIBRARY avgsub
 EXPORTS average

These source files can be compiled and linked using Visual C++ 2.0. The
result is a Win32 DLL named "avgsub.dll". This DLL file can be located by
HPBW in a variety of directories -- including the current directory,
directories listed in your PATH, HPBW's directory, and the WINDOWS directory
or WINDOWS\SYSTEM directory; to minimize confusion, you might want to create
a standard place to keep all your CSUB DLL files.

Once you have the PROG and DLL files, you can then create the actual CSUB
using the HPBCSUB utility; the resulting CSUB file will have the same name as
the prototype file, but with a ".CSB" suffix instead of a ".PRO" suffix.

Our example can be created by executing the following command in DOS or a DOS
window:

 HPCSUBW MY_SUB AVGSUB.DLL

This creates the PROG file MY_SUB.CSB that contains the CSUB "Average".

* The last step is to LOAD the new CSUB into an existing HP BASIC program and
CALL it. There are several HP BASIC statements available for loading (and
deleting) CSUBs; for example:

 LOADSUB ALL FROM "MY_SUB.CSB"

After writing a few lines of test code in HP BASIC and executing a LOADSUB
statement, the HPBW BASIC program for our example might look like this:

 10 INTEGER I
 20 REAL Dat(0:9),Avg
 30 FOR I=0 TO 9
 40 Dat(I) = I
 50 NEXT I
 60 CALL Average(Dat(*), Avg)
 70 PRINT "Average is ";Avg
 80 END
 90 CSUB Average(REAL Dat(*), REAL Avg)

If you use STORE to file this program to disk, the CSUB will be filed along
with the rest of the program in the PROG file. A subsequent LOAD will yield a
fully functioning program (as long as HPBW can find the DLL at run time). If
you SAVE a program containing a CSUB, however, the CSUB is not saved, and you
have to do a LOADSUB to bring it in again after you GET the program.

* The CSUB Toolkit provides utility functions for communicating with HPBW's
keyboard and display. For example, "kbdcrt_readkbd()" returns the contents of
the KBD$ buffer, and "kbdcrt_printstr()" writes a string to HPBW's "Output
Area". Routines are available to access the KDB and CRT status and control
registers, scroll the display, and other functions; the use of these routines

HP BASIC for Windows CSUBs 1997

BOURBAKY BP 53 - 13, Rue des Alpes 07302 TOURNON Cedex - France 04 75 07 81 20 04 75 07 29 74
http://www.bourbaky.com page 3/5

is explained in the CSUB documentation.

Standard C routines, like "fopen()" and "fprintf()", can be used for file-I/O;
note, however, that these functions have no intrinsic knowledge of the unique
file formats associated with HPBW (such as PROG or ASCII), and normal DOS file
types are recommended for use with CSUBs.

As far as interface I/O is concerned, users may be interested in using CSUBs
to improve handling of interfaces that HPBW already supports, such as HPIB --
or gaining access to interfaces that HPBW does not support, such as the VXI
backplane on an embedded controller.

Trying to use a CSUB to get to an interface that is already supported by HPBW
is not recommended; it can lead to conflicts with the HPBW driver, and most
performance issues can be addressed by a better use of HPBW's extensive I/O
formatting capabilities.

If you want to access an interface that HPBW does not support, CSUBs are the
only avenue; such interfaces are often provided with DLLs and a CSUB could
make use of these DLLs -- except for one problem: most of the DLLs out there
right now are 16-bit DLLs and, as noted, a CSUB is based on a Win32 DLL.

A 32-bit DLL cannot interchange pointers with a 16-bit DLL without going
through a process called "thunking". Thunking introduces several confusing
layers between you and your goal, and forces you to be extremely careful in
your handling of data types; it also forces you to produce an extra 16-bit DLL
beyond the CSUB and the target 16-bit DLL. A good thunking example would be
too long for this document; consult your Windows documentation or the
"\MSVC32S\UT\SAMPLES" directory.

Some special considerations apply if your CSUB uses thunking. Thunking is
enambled by a "UTRegister()" call at DLL load time; this happens when the DLL
is attached to your process, not when you execute LOADSUB. Most CSUB examples
(including the one in this document) contain only the entry points needed by
CALL; to perform the correct "UTRegister()" sequence, you must add an
initialization routine to your source file of the form:

 BOOL APIENTRY
 Dllnit(HANDLE hinst, DWORD fdwReason, LPVOID lpReserved)
 {
 /* Perform proper UT registration sequence. */
 return(TRUE);
 }

When creating such a CSUB, you must provide the linker with the name of the
DLL entry point. This can be done with a link option, such as:

 /ENTRY:"Dllnit"

* A few sophisticated users have developed CSUBs that directly access CRT
hardware on HP Series 200/300 HP BASIC/WS systems, an impressive
accomplishment -- but one that cannot be ported to the PC environment as

HP BASIC for Windows CSUBs 1997

BOURBAKY BP 53 - 13, Rue des Alpes 07302 TOURNON Cedex - France 04 75 07 81 20 04 75 07 29 74
http://www.bourbaky.com page 4/5

the PC display systems are entirely different.

Similarly, CSUBs developed for RMB-UX that access interface hardware are
useless on the PC. Any old CSUB that required intimate knowledge of specific
hardware must be abandoned when you port to the PC/Windows platform.

[<>]

HP BASIC for Windows CSUBs 1997

BOURBAKY BP 53 - 13, Rue des Alpes 07302 TOURNON Cedex - France 04 75 07 81 20 04 75 07 29 74
http://www.bourbaky.com page 5/5

